
## Work, Energy, and Power – Formula Sheet:

| Kinetic Energy:                                         |                                                                                                                                    |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| $\xrightarrow{\text{KE}} \lor$                          | $KE = \frac{1}{2}mv^{2}$ Note: Objects in motion have kinetic energy.                                                              |
| PE m                                                    | Potential Energy: $PE = U_G$ $PE = mgh$ $U_G = mgy$                                                                                |
| <sup>n</sup>                                            | Note: Objects that have the ability to fall under the influence of gravity has potential energy.<br>Work Done by a Constant Force: |
| $\xrightarrow{F} \longrightarrow$                       | W = Fd                                                                                                                             |
|                                                         | Work Done by a Constant Force at an Angle:                                                                                         |
| , <b>⊢</b>                                              | $W = Fd\cos\theta$                                                                                                                 |
|                                                         | $W = \vec{F} \cdot \vec{d}$                                                                                                        |
| $m \xrightarrow{\bullet} d$                             | $\boldsymbol{W} = F_{\boldsymbol{x}} d_{\boldsymbol{x}} + F_{\boldsymbol{y}} d_{\boldsymbol{y}}$                                   |
|                                                         | Work Done by a Varying Force:                                                                                                      |
| F                                                       | $W = \int_{a}^{b} F(x) dx$ $W = Area under the curve$                                                                              |
| │ └─── <b>&gt;</b> ×                                    |                                                                                                                                    |
| Simple Definition of Energy:<br>The ability to do work. | Work-Energy Theorem:                                                                                                               |
|                                                         | $\boldsymbol{W_{net}} = \Delta KE$                                                                                                 |
| Definition of Work:                                     | 1                                                                                                                                  |
| The transfer of energy that occurs by means of a force. | $W_{net} = \frac{1}{2}m[v_F^2 - v_0^2]$                                                                                            |
|                                                         | $W_{net} = W_c + W_{nc}$                                                                                                           |

| Conservation Forces:                                                                                            | Work Done by a Conservative Force:                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>Gravitational force</li> <li>Electric force</li> <li>Elastic force</li> </ol>                          | $W_c = -\Delta U = -\Delta P E$<br>Work Done by Gravity:                                                                                                |
|                                                                                                                 | $\boldsymbol{W}_{\boldsymbol{G}} = -\Delta U_{\boldsymbol{G}} = -mg(y_2 - y_1)$                                                                         |
|                                                                                                                 | Work Done by the Elastic Spring Force:                                                                                                                  |
|                                                                                                                 | $W_{S} = -\Delta U_{S} = -\frac{1}{2}k[x_{F}^{2} - x_{0}^{2}]$                                                                                          |
|                                                                                                                 | Work Done by the Electric Force:                                                                                                                        |
|                                                                                                                 | $\boldsymbol{W}_{E} = -\Delta U_{E} = -q\Delta V = -q[V_{F} - V_{0}]$                                                                                   |
| Nonconservative Forces:                                                                                         | Work Done by a Nonconservative Force:                                                                                                                   |
| <ol> <li>Applied Force</li> <li>Tension Force</li> <li>Frictional Force</li> </ol>                              | $\boldsymbol{W_{nc}} = \Delta M \boldsymbol{E}$                                                                                                         |
| Conservation of <i>ME</i> :                                                                                     | Conservation of Energy:                                                                                                                                 |
| Mechanical energy is conserved when only conservative forces                                                    | ME = KE + PE                                                                                                                                            |
| are present in the system.                                                                                      | $\boldsymbol{W_{nc}} = W_{net} - W_c$                                                                                                                   |
|                                                                                                                 | $\boldsymbol{W_{nc}} = \Delta ME$ $\boldsymbol{W_{net}} = \Delta KE$ $\boldsymbol{W_c} = -\Delta PE$                                                    |
| Derivatives:                                                                                                    | Force – Potential Energy Integral Relationship:                                                                                                         |
| $F_x = -\frac{d}{dx}[U(x)]$                                                                                     | $\boldsymbol{U}(\boldsymbol{x}) = -\int F(\boldsymbol{x})d\boldsymbol{x} \qquad \Delta \boldsymbol{U} = -\int_{a}^{b} F(\boldsymbol{x})d\boldsymbol{x}$ |
| × - 0                                                                                                           | Restoring Force of a Spring:                                                                                                                            |
| $F_s = +$                                                                                                       | $F_s = -kx$                                                                                                                                             |
|                                                                                                                 | Elastic Potential Energy of a Spring:                                                                                                                   |
| $ \begin{array}{c} x = 0 \\ F_{s} = + \\ F_{s} = - \\ x = - \\ x = + \\ F_{s} = - \\ F_{s} = - \\ \end{array} $ | $\boldsymbol{U}_{\boldsymbol{s}} = \frac{1}{2}kx^2$                                                                                                     |
| F <sub>S</sub> = -                                                                                              | $U(x) = -\int F(x)  dx = -\int -kx  dx = \frac{1}{2}kx^2 + C$                                                                                           |

www.Video-Tutor.net

