
NVIDIA HOPPER GPU: SCALING PERFORMANCE
JACK CHOQUETTE | AUGUST 2022

AGENDA

 H100 GPU Overview

 Accelerating Principles for Performance
 Data Locality & Cooperative Execution

 Asynchronous Execution & Data Transfer

 Accelerating Deep Learning

 Preview: Scaling Up and Out

 Wrap Up

AGENDA

 H100 GPU Overview

 Accelerating Principles for Performance
 Data Locality & Cooperative Execution

 Asynchronous Execution & Data Transfer

 Accelerating Deep Learning

 Preview: Scaling Up and Out

 Wrap Up

80B Transistors, TSMC 4N
HOPPER H100 TENSOR CORE GPU

2nd Gen Multi-Instance GPU
Confidential Computing
PCIe Gen5

New Memory System
World’s First HBM3 DRAM
Larger 50MB L2

4th Gen NVLink 900GB/s total BW
New SHARP support
NVLink Network

132 SMs 2x Performance per Clock
4th Gen Tensor Core
Thread Block Clusters

NEW HOPPER SM ARCHITECTURE

 2x faster FP32 & FP64 FMA

 256 KB L1$ / Shared Memory

 New 4th Gen Tensor Core

 New DPX instruction set

 New Tensor Memory Accelerator

 Fully asynchronous data movement

 New Thread Block Clusters

 Turn locality into efficiency

Memory data rates not finalized and subject to change in the final product.

WORLD'S FIRST HBM3 MEMORY
ARCHITECTURE
Greatest Generational Leap in Memory
Bandwidth 3 TB/s

 5 HBM sites with 80 GB capacity

 Dramatic improvement in HBM frequency

 New DRAM controller with 2x independent
channels maintains same high efficiency

0

1

2

3

4

P100 V100 A100 H100

2x DRAM
Bandwidth

HBM2
2016

HBM2
2017

HBM2
2020

HBM3
2022

1.7x

1.6xD
el

iv
er

ed
 B

an
dw

id
th

 [
TB

/s
]

HOPPER H100 MULTI-INSTANCED GPUS
Faster and More Secure

Higher perf per MIG

 3X more compute capacity

 2X more memory bandwidth

Dedicated image and video decoders per MIG

Trusted Execution Environment per MIG

 GPU virtualization (PCIe SR-IOV)

 HW-based security for confidentiality and integrity

 HW firewalls for mem isolation between MIGs

Multi-Tenant, Single GPU Support

Secure MIG:
1 VM per GPU instance

CPU

H100

Fi
re

w
al

l

Fi
re

w
al

l

Fi
re

w
al

l

Encrypted Transfers

Confidential
VM1

Secure GPU
Instance1

NVIDIA
Driver

PCIE VF1

TEE

Confidential
VM2

Secure GPU
Instance2

NVIDIA
Driver

PCIE VF2

TEE

Confidential
VM3

Secure GPU
Instance3

NVIDIA
Driver

PCIE VF3

TEE

Confidential
VM4

Secure GPU
Instance4

NVIDIA
Driver

PCIE VF4

TEE

0x

2x

4x

6x

8x

Climate Modelling Lattice QCD 3D FFT Genomics
0x

5x

10x

15x

20x

25x

30x

35x

GPT-3 (530B Params)… GPT-3 (530B Params)… GPT-3 (530B Params)…
0x

2x

4x

6x

8x

10x

Vision Models 10TB Recommender GPT-3 175B Switch-XXL 395B

H100 ENABLES NEXT-GENERATION AI AND HPC BREAKTHROUGHS

Sp
ee

du
p
 o

ve
r

A
10

0

A100 H100 H100 + NVLink Network

HPC AI Inference AI Training

Projected performance subject to change. A100 cluster: HDR IB network. H100 cluster: NDR IB network with NVLink Network where indicated.
GPUs: Climate Modelling 1K, LQCD 1K, Genomics 8, 3D-FFT 256, MT-NLG 32 (batch sizes: 4 for A100, 60 for H100 at 1sec, 8 for A100 and 64 for H100 at 1.5 and 2sec), MRCNN 8 (batch 32),

GPT-3 16B 512 (batch 256), DLRM 128 (batch 64K), GPT-3 175B 16K (batch 512), MoE 8K (batch 512, one expert per GPU)

Megatron Turing NLG 530B

AGENDA

 H100 GPU Overview

 Accelerating Principles for Performance
 Data Locality & Cooperative Execution

 Asynchronous Execution & Data Transfer

 Accelerating Deep Learning

 Preview: Scaling Up and Out

 Wrap Up

KEYS TO PARALLEL PROGRAMMING PERFORMANCE

Data Locality

 Latency reduction for parallelized computation

 Higher bandwidth due to localized communication

Asynchronous Execution

 Overlap independent work

 Keep all units fully utilized

 Concurrency with minimal synchronization delays

Overlap Memory Transfers & Processing

SMEM L1 Cache

Threads
Tensor Core

Registers

L2 Cache

GPU Memory

GPU

Batch 1 Batch 2 Batch 3 Producer Thread Group

Batch 2 Batch 0Consumer Thread Group

Async Mem Copy CopyCopy

SM

Batch 1

Copy

AGENDA

 H100 GPU Overview

 Accelerating Principles for Performance
 Data Locality & Cooperative Execution

 Asynchronous Execution & Data Transfer

 Accelerating Deep Learning

 Preview: Scaling Up and Out

 Wrap Up

LOCALITY

 Data & parallel execution has a spatial relationship

 Computational reuse of data, e.g.
 Halo overlap

 Share data in one dimension, different data in other dimension

 Data & parallel execution has a temporal relationship

 Computation passing over data
 One kernel processes data, then a different kernel

processes the data

halo

halo

halo

halo

Kernel A

Kernel B

Spatial

Data
Storage

Temporal

T I M E

GPU

SPATIAL LOCALITY: EXISTING

L2 Cache / HBM3 Memory

SM

RF RF RF RF

Shared Memory

SM

RF RF RF RF

Shared Memory

SM

RF RF RF RF

Shared Memory

SM

RF RF RF RF

Shared Memory

SM

RF RF RF RF

Shared Memory

SM

RF RF RF RF

Shared Memory

SM

RF RF RF RF

Shared Memory

SM

RF RF RF RF

Shared Memory

CUDA
View

Grid

Thread Block

Threads

SM

Lanes

HW
Hierarchy

GPU

L2 Cache / HBM3
Memory

NVLink / NVSwitch

GPU

L2 Cache / HBM3
Memory

GPU

L2 Cache / HBM3
Memory

GPU

Localized Storage

 GPU
 80 GB HBM3 Memory

 50 MB L2 Cache

 SM
 256KB L1 Data Cache plus Shared Memory

 Threads
 1KB RF per thread; 64KB per SM Partition; 256KB per

SM

WORK MAPPING

Many Threads
in each Block

Grid
of work

Blocks
of Threads

ORDERS OF MAGNITUDE GPU SCALING

Kepler GK110 GPU, 2012 Hopper H100 GPU, 2022

15 SMs 132 SMs

SM GPCSM

Kepler GK110

GPU

SPATIAL LOCALITY: THREAD BLOCK CLUSTERS

 Localized Storage

 GPU
 80 GB HBM3 Memory

 50 MB L2 Cache

 SM & GPC
 256KB L1 Data Cache plus Shared Memory per SM

 Threads
 1KB per thread; 64KB per SM Partition; 256KB per SM

SM

RF RF RF RF

Shared Memory

SM

RF RF RF RF

Shared Memory

SM

RF RF RF RF

Shared Memory

SM

RF RF RF RF

Shared Memory

SM

RF RF RF RF

Shared Memory

SM

RF RF RF RF

Shared Memory

SM

RF RF RF RF

Shared Memory

SM

RF RF RF RF

Shared Memory

GPU

L2 Cache / HBM3
Memory

NVLink / NVSwitch

GPU

L2 Cache / HBM3
Memory

GPU

L2 Cache / HBM3
Memory

CUDA
View

Grid

Cluster

Thread Block

GPC

SM

HW
Hierarchy

GPU

Threads Lanes

GPC

L2 Cache / HBM3 Memory

SM-to-SM Network
GPC

SM-to-SM Network

THREAD BLOCK CLUSTER
A Collective of Blocks, Co-scheduled on Adjacent Multiprocessors

Threads

Cluster
of Blocks

Blocks
of Threads

Grid
of work

THREAD BLOCK CLUSTER
Building Hierarchy into a Program

A cluster is a collective of up to 16 blocks

Guaranteed to be on different SMs

Guaranteed to be running at the same time

1D, 2D or 3D, just like blocks

Annotate a kernel with its required cluster size

New cluster dimension annotation for __global__ functions:

__cluster_dims__(x, [y, [z]])

Plus: New extensible launch API allows configuration at launch time

Threads

Cluster
of Blocks

Blocks
of Threads

Grid
of work

__cluster_dims__(4, 2, 1) // 8-block cluster of size
4x2x1
__global__ void helloCluster()
{

cooperative_groups::cluster_group cluster = this_cluster();
cluster.sync();

printf(“Hello from cluster elem %d\n”, cluster.cluster_rank());
}

GPC

SM

RF RF RF RF

Shared Memory

SM

RF RF RF RF

Shared Memory

SM

RF RF RF RF

Shared Memory

SM

RF RF RF RF

Shared Memory

L2 Cache / HBM3 Memory

SM-to-SM Network

DIRECT SM-TO-SM COMMUNICATIONS
WITHIN A CLUSTER

 Dedicated SM to SM network for direct low latency
access w/out needing to go through L2

 Threads can reference another Thread Block’s Shared
Mem directly

 Distributed Shared Memory (DSMEM) Programming Model,
laid out as a Partitioned Global Address Space

 Loads, stores, atomics, reductions, asynchronous DMA ops,
Arrive barrier ops

 Accelerated Synchronization and Data Exchange
 Blocks in a cluster can synchronize together via barriers

in DSMEM

 Asynchronous DMA operations

TEMPORAL LOCALITY: EXISTING

 Data moved into Local HBM3 memory

 Multiple dependent kernels operate on that data

Limitation/Challenges

 Dependent kernels must be separate launches

 Any data locally stored in SM must be flushed
 to L2/HBM3 memory between kernels

load input

fft64()

store output

load input

fft256()

store output

L2/HBM3
Memory

Grid Launch

Dependent Grid Launch

load input

fft81()

store output

Dependent Grid Launch

ra
di

x-
6
4

ra
di

x-
2
5
6

ra
di

x-
8
1

T I M E

FFT Workflow

load input

fft64k()

<reconfigure>

fft256()

<reconfigure>

fft81()

store output

TEMPORAL LOCALITY:
THREAD BLOCK RECONFIGURATION

 Data moved into Local SMEM/DSMEM

 Multiple dependent kernels operate on that data

 Each kernel able to change thread count and RF
allocation per thread in most efficient work to
thread mapping

 Data stays resident in SMEM/DSMEM between kernels

co
m

bi
n
ed

 F
FT

L2/HBM3
Memory

T I M E

FFT Workflow

Grid Launch

AGENDA

 H100 GPU Overview

 Accelerating Principles for Performance
 Data Locality & Cooperative Execution

 Asynchronous Execution & Data Transfer

 Accelerating Deep Learning

 Preview: Scaling Up and Out

 Wrap Up

SYNCHRONOUS MACHINE

Cooperative Execution Producer/Consumer Pipeline

Phase 1

Phase 2

Phase 3

Thread
Group A

Thread
Group B

Phase 1

Sync

Sync

Phase 2

Phase 3

Idle

Idle

Produce
Batch 1

Produce
Batch 2

Produce
Batch 3

Thread
Group A

Thread
Group B

Consume
Batch 0

Sync

Sync

Consume
Batch 1

Consume
Batch 2

Idle

Idle

T I M E T I M E

ASYNCHRONOUS MACHINE

Cooperative Execution Producer/Consumer Pipeline

Phase 1

Phase 2

Phase 3

Thread
Group A

Thread
Group B

Phase 1

Independent

Phase 2

Phase 3

Arrive

Arrive
Wait

Wait

Independent

Arrive Arrive

Wait Wait

Independent Independent

Produce
Batch 1

Produce
Batch 2

Produce
Batch 3

Thread
Group A

Thread
Group B

Consume
Batch 0

Consume
Batch 1

Consume
Batch 2

Arrive

Wait

Arrive Wait

T I M E T I M E

ASYNCHRONOUS BARRIER

 Produce data > Barrier > Consume data

 Barrier split into 2 steps
 Arrive = Thread done producing data

 Wait = Thread ready to start consuming data

 Arrive is non-blocking

Use cases

 Synchronizing with other threads in Block

 Synchronizing with other thread in Cluster

Permits Overlapped Execution of Independent Work

Overlapped
Execution

New for H100:
Waiters sleep instead of polling on
barrier in SMEM and improved latency

A100: Waiters spin until
all threads have arrived

Asynchronous Barrier (from A100)

Threads

Threads counted as
they arrive at barrier

Independent
Work

Arrive

Wait

Produce
Data

Consume
Data

Waiters sleep until all
threads have arrived
and async memory
transactions have
completed

ASYNCHRONOUS TRANSACTION
BARRIER

 Barrier counts threads and async memory transactions

 Store passes data + transaction_count

 Drop-in enhancement to existing cuda::barrier

Use cases

 Cluster Block to Block communication with barrier

 Async Mem_copy with barrier

New Form of Barrier with “Data Arrival Tracking”

Data arrival increments
transaction count

Async Writes

Async Transaction Barrier (New on H100)

Threads

Threads counted as
they arrive at barrier

Independent
Work

Arrive

Wait

Produce
Data

Consume
Data

GPU GPC

SM
RF RF RF RF

Shared Memory

SM
RF RF RF RF

Shared Memory

SM
RF RF RF RF

Shared Memory

SM
RF RF RF RF

Shared Memory

L2 Cache / HBM3 Memory

SM-to-SM Network

BLOCK TO BLOCK DATA EXCHANGE

Exchange requires 3-4 round-trips to global mem

 Write data*

 Memory barrier

 Write flag

 Poll flag (request & response)

 Read data (request & response)

Exchange requires only a one-way trip to DSMEM

Minimum latency data exchange

7x latency reduction

 Write data* and update barrier

Existing: Data Exchange via Global Memory New: Asynchronous Store within Cluster

*Both stores and reduction atomics supported

SM
RF RF RF RF

Shared Memory

SM
RF RF RF RF

Shared Memory

SM
RF RF RF RF

Shared Memory

SM
RF RF RF RF

Shared Memory

L2 Cache / HBM3 MemoryData + Flag

Data + Barrier

GPC

SM
RF RF RF RF

Shared Memory

SM
RF RF RF RF

Shared Memory

SM
RF RF RF RF

Shared Memory

SM
RF RF RF RF

Shared Memory

L2 Cache / HBM3 Memory

SM-to-SM Network

GPC

SM
RF RF RF RF

Shared Memory

SM
RF RF RF RF

Shared Memory

SM
RF RF RF RF

Shared Memory

SM
RF RF RF RF

Shared Memory

L2 Cache / HBM3 Memory

SM-to-SM Network

Data + Barrier

ASYNC MEM COPY USING TMA

 Global <=> Shared Mem

 Shared Mem <=> Shared Mem for Clusters

 Address generation for 1D to 5D Tensors

 No addr gen or data movement overhead

 Synchronize with transaction barrier

 Simplified programming model

HW-accelerated mem_copies Fully asynchronous with respect to threads

Source DataTMAData + BarrierTMA

Source Data

CLUSTER

Thread Block

RF RF RF RF

Shared Memory

Thread Block

RF RF RF RF

Shared Memory

Thread Block

RF RF RF RF

Shared Memory

Thread Block

RF RF RF RF

Shared Memory

L2 Cache / HBM3 Memory

SM-to-SM Network

EXAMPLE HALO DATA EXCHANGE

halo

halo

halo

halo

Thread Block Thread Block

Thread Block Thread Block

Data + Barrier

Efficient asynchronous data exchange with minimal latency

A FULLY ASYNCHRONOUS GPU
ARCHITECTURE

 Async Transaction Barriers — Atomic data movement with
synchronization

 More efficient Waiting on Barriers

 Async Mem_copy via TMA

Hopper Enables End-to-End Fully Asynchronous Pipelines

Batch 1 Batch 2 Batch 3 Producer Thread Group

Batch 2 Batch 0Consumer Thread Group

Async Mem Copy CopyCopy

Batch 1

Copy

0x

1x

2x

3x

64K FFT Longstaff Schwartz
Pricing

Histogram Collection

R
el

at
iv

e
Pe

rf

Cluster Performance

Without Clusters With Clusters

2.0x

2.7x

1.7x

CLUSTERS AND ASYNC EXECUTION

 Thread Block Clusters

 Fast synchronization

 Inter-Block Shared memory access (DSMEM)

 Minimum latency data exchange with
transaction barrier

 TMA async memory copy

Cooperative execution with more threads
& larger shared mem, combined with
asynchronous execution & data movement
yields higher perf

Programmatically Exploiting the Hierarchy of the GPU

AGENDA

 H100 GPU Overview

 Accelerating Principles for Performance
 Data Locality & Cooperative Execution

 Asynchronous Execution & Data Transfer

 Accelerating Deep Learning

 Preview: Scaling Up and Out

 Wrap Up

HOPPER 4TH GEN TENSOR CORE

 2x faster clock-for-clock

 Supports wide range of storage and math formats

 New FP8 format support

 More efficient data management saves up to 30% operand
delivery power

 Accelerates sparse tensor arithmetic

Format
A100 SM

MACs/clock
dense | sparse

H100 SM
MACs/clock

dense | sparse
Speedup

FP64 64 | --- 0128 | ------ 2x

TF32 512 | 1024 1024 | 2048 2x

FP16 1024 | 2048 2048 | 4096 2x

BF16 1024 | 2048 2048 | 4096 2x

INT8 2048 | 4096 4096 | 8192 2x

FP8 - 4096 | 8192 New!

H100 COMPUTE IMPROVEMENTS BREAKDOWN

0x

2x

4x

6x

8x

A100 132 SMs Tensor Core FP8 Frequency

Im
p
ro

ve
m

en
t

ov
er

 A
1
0
0

6x throughput for the world’s most compute-hungry workloads

6x

1.2x

2x

2x

1.3x

FP8 TENSOR CORE

FP32|FP16|BF16|FP8
matrix

FP8
matrix

FP8
matrix

multiply

accumulate into
FP32 or FP16

bias/act/…

convert

Allocate 1 bit to either range or precision Support for multiple accumulator and output types

2x throughput & half footprint of FP16/BF16

FP32

Range
exponent

Precision
mantissa

e8 m23
s

FP16

BF16
e8 m7

e5 m10

sign

FP8
(E5M2)

FP8
(E4M3)

e4 m3

e5 m2

s

s

s

s

SM

TC

FP8 NUMERICS

 E4M3: needed for forward pass/inference (2-bit mantissa
insufficient for some nets)

 E5M2: needed for some gradient tensors in some networks (E4
dynamic range not wide enough)

 E.g. BMM1 in Transformer Attention

 Tensor values are computed in higher precision, converted
to FP8

 Scale (i.e. “shift”) tensor values prior to FP8 conversion:

 “Unscale” after linear math (matrix multiply), prior to
other math or conversions

FP8 TRANSFORMER ENGINE

 Optimal Transformer acceleration with Hopper Tensor Core

 Transparent to DL frameworks

 User can enable/disable

 Selectively applies new FP8 format for highest throughput

 Monitors tensor statistics and dynamically adjusts range to
maintain accuracy

Transformer layer

Statistics

Target format

Hopper Tensor Core

Next layer information

Scaling factors

Transformer Engine

Adaptive
Format

Conversion

Adaptive precision High precision Auxiliary data

Range
Analysis

TRANSFORMER MODELS TRAINED WITH FP8
Matches 16-bit training accuracy/perplexity and downstream task performance

FP8 inference after training requires no quantization or fine-tuning

GPT-3 Language Models

Architecture Network Dataset Metric 16-bits FP8

Transformer

Vaswani Base WMT BLEU 26.87 26.76

Vaswani Large WMT BLEU 28.43 28.35

Transformer

XL Base WikiText PPL* 22.71 22.76

XL Large WikiText PPL* 17.90 17.85¹

BERT

BERT Base Wikipedia Loss* 1.352 1.357¹

BERT Large Wikipedia Loss* 1.163 1.167

¹ Gradients are in E5M2, otherwise all linear inputs are E4M3 *Lower is better All models trained on A100 using “emulated” FP8 input/output (pre-silicon/pre-SW methodology)

TMA: EFFICIENT COPY OF DL TENSOR MEMORY

Multi-Dimensional Tensor Copying

 Automatic stride & address generation up to tensors
of rank 5

 Boundary padding for out-of-bounds accesses

 Fire-and-forget from a single thread – everything
handled by TMA

 No iteration or bounds-checking code required

Te
ns

or
 h

ei
gh

t

Tensor width

Block width

Block height

Tensor Access Stride

Automatic
Padding

The TMA can copy sub-regions of a multi-dimensional tensor

AGENDA

 H100 GPU Overview

 Accelerating Principles for Performance
 Data Locality & Cooperative Execution

 Asynchronous Execution & Data Transfer

 Accelerating Deep Learning

 Preview: Scaling Up and Out

 Wrap Up

DGX H100 SUPERPOD:
AI EXASCALE

 32 DGX H100 nodes

 256 H100 Tensor Core GPUs

 164 NVLink4 NVSwitch chips

 1 ExaFLOP peak AI compute

 70.4 TB/s bisection bandwidth

 Network optimized for AI and HPC

 New NVLink Network interconnect

 NDR 400 Gb/s InfiniBand

Peak compute throughput numbers assume sparse FP8

Check out the NVSwitch/SuperPOD
Hot Chip Talk for More Details!

NVIDIA GRACE HOPPER

 Up to 512GB LPDDR5
 6x more than GPU HBM

 900 GB/s CPU-GPU BW
 7x PCIe Gen5 bandwidth

 Hardware coherent

Grace CPU + Hopper GPU

Check out the Grace CPU Hot Chip
Talk for More Details!

AGENDA

 H100 GPU Overview

 Accelerating Principles for Performance
 Data Locality & Cooperative Execution

 Asynchronous Execution & Data Transfer

 Accelerating Deep Learning

 Preview: Scaling Up and Out

 Wrap Up

HOPPER DELIVERS A GENERATIONAL LEAP
IN PERFORMANCE, EFFICIENCY, AND SECURITY

H100 Whitepaper
www.nvidia.com/hopper-architecture-whitepaper

THANKS TO THE MANY NVIDIA ENGINEERS WHO DESIGNED
AND BUILT THE H100 GPU AND THOSE WHO CONTRIBUTED TO
THIS PRESENTATION

HOPPER DELIVERS A GENERATIONAL LEAP
IN PERFORMANCE, EFFICIENCY, AND SECURITY

H100 Whitepaper
www.nvidia.com/hopper-architecture-whitepaper

QUESTIONS?

THANKS TO THE MANY NVIDIA ENGINEERS WHO DESIGNED
AND BUILT THE H100 GPU AND THOSE WHO CONTRIBUTED TO
THIS PRESENTATION

